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Abstract

Various symmetries connected with purine-pyrimidine content of

DNA sequences are studied in terms of the intruduced determinative

degree, a new characteristics of nucleotide which is connected with

codon usage. A numerological explanation of CG pressure is pro-

posed. A classification of DNA sequences is given. Calculations with

real sequences show that purine-pyrimidine symmetry increases with

growing of organization. A new small parameter which characterizes

the purine-pyrimidine symmetry breaking is proposed for the DNA

theory.
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Abstract investigation of the genetic code is a powerful tool in DNA mod-
els construction and understanding of genes organization and expression [1].
In this direction the study of symmetries [2, 3], application of group theory [4]
and implication of supersymmetry [5] are the most promising and necessary
for further elaboration. In this paper we consider symmetries connected with
purine-pyrimidine content of DNA sequences in terms of the determinative
degree introduced in [6].

We denote a triplet of nucleotides by xyz, where x, y, z = C,T,A,G.
Then redundancy means that an amino acid is fully determined by first two
nucleotides x and y independently of third z [1]. Sixteen possible doublets xy
group in 2 octets by ability of amino acid determination [7]. Eight doublets
have more “strength” in sense of the fact that they simply encode amino
acid independently of third bases, other eight (“weak”) doublets for which
third bases determines content of codons. In general, transition from the
“powerful” octet to the “weak” octet can be obtained by the exchange [7]

C
∗

⇐⇒ A, G
∗

⇐⇒ T, which we name “star operation (∗)” and call purine-
pyrimidine inversion. Thus, if in addition we take into account GC pressure
in evolution [8] and third place preferences during codon-anticodon pairing
[9], then 4 nucleotides can be arranged in descending order in the following
way:

Pyrimidine Purine Pyrimidine Purine
C G T A

very “strong” “strong” “weak” very “weak”
(1)

Now we introduce a numerical characteristics of the empirical “strength”
— determinative degree dx of nucleotide x and make transition from qualita-
tive to quantitative description of genetic code structure [6]. It is seen from
(1) that the determinative degree of nucleotide can take value dx = 1, 2, 3, 4
in correspondence of increasing “strength”. If we denote determinative de-
gree as upper index for nucleotide, then four bases (1) can be presented
as vector-row V =

(

C(4) G(3) T(2) A(1)
)

. Then the exterior product
M = V × V represents the doublet matrix M and corresponding rhombic
code [10], and the triple exterior product K = V × V × V corresponds to
the cubic matrix model of the genetic code which were described in terms
of the determinative degree in [6]. To calculate the determinative degree of
doublets xy we use the following additivity assumption

dxy = dx + dy, (2)
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which holds for triplets and for any nucleotide sequence. Then each of 64
elements (codons) of the cubic matrix K will have a novel number character-
istics —determinative degree of codon dxyz = dcodon = dx + dy + dz which
takes value in the range 3 ÷ 12. We can also define the determinative degree
of amino acid dAA as mean arithmetic value dAA =

∑

dcodon/ndeg, where ndeg

is its degeneracy (redundancy). That can allow us to analyze new abstract
amino acid properties in connection with known biological properties [6].

Let us consider a numerical description of an idealized DNA sequence
as a double-helix of two codon strands connected by complementary condi-
tions [1]. Each strand is described by four numbers (nC, nG, nT, nA) and
(mC, mG, mT, mA), where nx is a number of nucleotide x in one strand. In
terms of nx and mx the complementary conditions are

nC = mG, mC = nG, nT = mA, mT = nA. (3)

The Chargaff’s rules [1] for a double-helix DNA sequence sound as: 1)
total quantity of purines and pyrimidines are equal NA + NG = NC + NT;
2) total quantity of adenine and cystosine equal to total quantity of guanine
and thymine NA + NC = NT + NG; 3) total quantity of adenine equal to
total quantity of thymine NA = NT and total quantity of cystosine equal to
total quantity of guanine NC = NG; 4) the ratio of guanine and cystosine to
adenine and thymine v = (NA + NT) / (NC + NG) is approximately constant
for each species. Usually the Chargaff’s rules are defined through macroscopic
molar parts which are proportional to absolute number of nucleotides in DNA
[1]. If we consider a DNA double-helix sequence, then Nx = nx + mx. In
terms of nx and mx the first three Chargaff’s rules lead to the equations which
are obvious identities, if complimentary (3) holds. From fourth Chargaff’s
rule it follows that the specificity coefficient vnm for two given strands is

vnm =
nA + mA + nT + mT

nC + mC + nG + mG

. (4)

The complementary (3) leads to the equality of coefficients v of each
strand vnm = vn = vm ≡ v, and v is connected with GC content pCG in the
double-helix DNA as pCG = 1/ (1 + v).

We consider another important coefficient: the ratio of purines and pyrim-
idines k. For two strands from the first Chargaff’s rule we obviously derive
knm = 1. But for each strand we have

kn =
nG + nA

nC + nT

, km =
mG + mA

mC + mT

(5)
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which satisfy the equation knkm = 1 following from complementary.
Let us introduce the determinative degree of each strand exploiting the

additivity assumption (2) as

dn = 4 · nC + 3 · nG + 2 · nT + 1 · nA, (6)

dm = 4 · mC + 3 · mG + 2 · mT + 1 · mA. (7)

The values dn and dm can be viewed as characteristics of the empirical
“strength” for strands, i.e. “strand generalization” of (1). Then we define
summing and difference “strength” of a double-helix sequence by

d+ = dn + dm, d− = dn − dm. (8)

The first variable d+ can be treated as the summing empirical “strength”
of DNA (or its fragment). Taking into account the complementary conditions
(3) we obtain d+ through one strand variables

d+ = 7 · (nC + nG) + 3 · (nT + nA) . (9)

We can also present d+ through macroscopically determined variables Nx

as follows d+ = 7 · NC + 3 · NA = 7 · NG + 3 · NT, or through GC and AT

contents as d+ =
7

2
· NC+G +

3

2
· NA+T.

To give sense to the difference d− we derive

d− = nC + nT − nG − nA. (10)

We see that the star operation obviously acts as (d+)∗ = d+ and (d−)∗ =
−d−. From (9)-(10) it follows the main statement:

The biological sense of the determinative degree d is contained
in the following purine-pyrimidine relations:

1) The sum of the determinative degrees of matrix and com-
plementary strands in DNA (or its fragment) equals to

d+ =
7

2
· NC+G +

3

2
· NA+T. (11)

2) The difference of the determinative degrees between ma-
trix and complementary strands in DNA (or its fragment) ex-
actly equals to the difference between pyrimidines and purines
in one strand
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d− = npyrimidines − npurines, (12)

where npyrimidines = nC + nT and npurines = nG + nA, or it is
equal to difference of purines or pyrimidines between strands

d− = npyrimidines − mpyrimidines = mpurines − npurines. (13)

We can also find connection between d+,d− and the coefficients k and v
as follows

d+ =
1

2
NC+G (7 + 3v) = NC+G

(

2 +
3

2 · pCG

)

, (14)

d− = npyrimidines (1 − kn) . (15)

If we consider one species for which v = const (or pCG = const), then
we observe that d+ ∼ NC+G, which can allow us to connect the determi-
native degree with ”second level” of genetic information [8]. From another

side, the ratio
7

3
of coefficients in (11) can play a numerological role in CG

pressure explanations [8], and therefore d+ can be considered as some kind
of “evolutionary strength”.

Now we consider the determinative degree of double-helix sequences in
various extreme cases and classify them. We call a DNA sequence mononu-
cleotide, dinucleotide, trinucleotide or full, if one, two, three or four numbers
nx respectively distinct from zero. Properties of mononucleotide double-helix
DNA sequence are in the Table 1.

Table 1. Mononucleotide DNA
nx d+ d− amino acid

nC 6= 0 7nC nC Pro

nG 6= 0 7nG −nG Gly

nT 6= 0 3nT nT Phe

nA 6= 0 3nA −nA Lis

The mononucleotide sequences which encode most extended amino acids
Gly and Lis have negative d−, and the mononucleotide sequences which en-
code amino acids Pro and Phe with similar chemical type of radicals have
positive d−.

The dinucleotide double-helix DNA sequences (without mononucleotide
parts) are described in the Table 2.
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Table 2. Dinucleotide DNA
nx d+ d− amino acid

nC 6= 0, nG 6= 0 7 (nC + nG) nC − nG Pro,Arg,Ala,Gly

nC 6= 0, nT 6= 0 7nC + 3nT nC + nT Pro,Phe,Leu,Ser

nC 6= 0, nA 6= 0 7nC + 3nA nC − nA Pro,Gly,Asn,Tur,His

nG 6= 0, nT 6= 0 7nG + 3nT nT − nG Gly,Leu,Val,Cys,Trp

nG 6= 0, nA 6= 0 7nG + 3nA −nG − nA Gly,Glu,Arg,Lys

nT 6= 0, nA 6= 0 3 (nT + nA) nT − nA Leu,Asn,Tur,TERM

The trinucleotide DNA can be listed in the similar, but more cumbersome
way. The full DNA sequences consist of nucleotides of all four types and
described by (9)-(10).

The introduction of the determinative degree allows us to single out a
kind of double-helix DNA sequences which have an additional symmetry.
We call a double-helix sequence purine-pyrimidine symmetric, if

d− = 0, (16)

i.e. its empiric “strength” vanishes. From (10) it follows

nC + nT = nG + nA, (17)

i.e. kn = km = 1, which can be rewritten for one strand

npyrimidines = npurines (18)

or as equality of purines and pyrimidines in two strands

npyrimidines = mpyrimidines, (19)

npurines = mpurines. (20)

The purine-pyrimidine symmetry (17) has two particular cases:

1)
nC = nG,
nT = nA,

− symmetric DNA, (21)

2)
nC = nA,
nT = nG,

− antisymmetric DNA. (22)

The first case corresponds to the Chargaff’s rule applied to a single strand
which approximately holds for long sequences [11], and so it would be inter-
esting to compare transcription and expression properties of symmetric and
antisymmetric double-helix sequences.
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We have made a preliminary analysis of real sequences of several species
taken from GenBank (2000) in terms of the determinative degree. It were
considered 10 complete sequences of E.coli (several genes and full genomic
DNA 9-12 min.), 12 complete sequences of Drosophila melanogaster (crc
genes), 10 complete sequences of Homo sapiens Chromosome 22 (various
clones), 10 complete sequences of Homo sapiens Chromosome 3 (various
clones). We calculated the nucleotide content NC, NT, NG, NA and the de-
terminative degree characteristics d+,d−, q = d−/d+, kn and v for every
sequence. Then we averaged their values for each species. The result is
presented in the Table 3.

Table 3. Mean determinative degree characteristics of real sequences

sequence
1

n

∑

d+
1

n

∑

d−

1

n

∑

q · 103 1

n

∑

kn

1

n

∑

v

E.coli 90806 -138 -6.8 1.07 1.38
Drosophila 7325 -70 -8.9 1.09 1.31

Homo sap. Chr.22 337974 6865 1.46 0.987 1.14
Homo sap. Chr.3 806435 -1794 -2.29 1.021 1.55

First of all we observe that all real sequences have high purine-pyrimidine
symmetry (smallness of parameter q). Also we see that the relation of purines
and pyrimidines in one DNA strand kn is very close to unity, therefore we
have a new small parameter in the DNA theory (kn − 1) (or q), which charac-
terizes the purine-pyrimidine symmetry breaking. This can open possibility
for various approximate and perturbative methods application. Second, we
notice from Table 3 that the purine-pyrimidine symmetry increases in direc-
tion from protozoa to mammalia and is maximal for human chromosome. It
would be worthwhile to provide a thorough study of purine-pyrimidine sym-
metry and codon usage in terms of the introduced determinative degree by
statistical methods, which will be done elsewhere.
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